

Khatra Adibasi Mahavidyalaya

Khatra, Bankura, West Bengal

Department of Mathematics

Syllabus Module (2021-2022)

Syllabus Module Dept. Of Mathematics

Session : 2021-2022

Khatra Adibasi Mahavidyalaya

		Semester -1			
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG	15	
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of	CDG	15	

	r	Т	1
the type $\int sin^n x dx$,			
$\int \cos^n x dx$,			
$\int tan^n x dx$,			
$\int \sec^n x dx \int (\log x)^n dx$			
, $\int sin^m x cos^n x dx$,			
parametric equations,			
parameterizing a			
curve, arc length, arc			
length of parametric			
curves, area of			
surface of revolution.			
Techniques of			
sketching conics.			
Unit 3	RB	15	
Reflection properties			
of conics, rotation of			
axes and second			
degree equations,			
classification of			
conics using the			
discriminant, polar			
equations of conics.			
Spheres. Cylindrical			
surfaces. Central			
conicoids,			
paraboloids, plane			
sections of conicoids,			
Generating lines,			
classification of			
quadrics, Illustrations			
of graphing standard			
quadric surfaces like			
cone, ellipsoid.			
Unit 4	CDG	15	60
Differential equations			
and mathematical			
models. General,			
particular, explicit,			
implicit and singular			
solutions of a			
differential equation.			
Exact differential			
	1	1	
equations and			
equations and integrating factors,			

		separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.		
SH/MTH/ 102/ C-2	Algebra	Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving AM≥GM≥HM, Cauchy-Schwartz inequality.	AI	15
		Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division	AI	15

	in finding the inverse of a matrix			
	theorem and its use			
	Cayley-Hamilton			
	Equation of a matrix.			
	Characteristic			
	Vectors and			
	гапк от а matrix, Eigen values, Eigen			
	subspaces of Rn, rank of a matrix,			
	dimension of			
	Subspaces of Rn,			
	invertible matrices.			
	characterizations of			
	inverse of a matrix,			
	transformation,			
	matrix of a linear			
	transformations,			
	Introduction to linear		15	00
	Unit 4	MN	15	60
	of linear systems, linear independence.			
	systems, applications			
	solution sets of linear			
	equation Ax=b,			
	equations, the matrix			
	echelon forms, vector			
	reduction and			
	equations, row			
	Systems of linear			
	Unit 3	MN	15	
	Arithmetic.			
	Theorem of			
	of Fundamental			
	Induction, statement			
	Mathematical			
	Principles of			
	between integers.			
	algorithm. Congruence relation			
	and Euclidean			
	algorithm, Divisibility			

103/ GE-1	Geometry & Differential Equation (GE T1)	Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.			
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int cos^n x dx$, $\int sec^n x dx$, $\int sec^n x dx \int (log x)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	CDG	15	
		Unit 3 Reflection properties of conics, rotation of axes and second degree equations,	CDG	15	

SH/MTH/	Real Analysis	Unit 1	AI	15	
				topic	s
				s per	lecture
			s	lecture	no. of
Course Code	Course Title	Course Topics	Teacher	No. of	Total
	SE	EMESTER – II			
i ne tentative	uates of Intern	nal Assessment ar	e in Jan	uary 20)22.
The test is)
		and transformations.			
		equations, special integrating factors			
		and Bernoulli			
		form, linear equation			
		reducible to this			
		and equations			
		separable equations			
		integrating factors,			
		equations and			
		Exact differential			
		differential equation.			
		solutions of a			
		implicit and singular			
		particular, explicit,			
		models. General,			
		and mathematical			
		Differential equations	CDG	15	60
		Unit 4	CDC	15	60
		cone, ellipsoid.			
		of graphing standard quadric surfaces like			
		quadrics, Illustrations			
		classification of			
		Generating lines,			
		sections of conicoids,			
		paraboloids, plane			
		conicoids,			
		surfaces. Central			
		Spheres. Cylindrical			
		equations of conics.			
		discriminant, polar			
		conics using the			

			I	
201/C-3	Review of Algebraic			
	and Order Properties			
	of R, ε-			
	neighbourhood of a			
	point in R. Idea of			
	countable sets,			
	uncountable sets and			
	uncountability of R.			
	Bounded above sets,			
	Bounded below sets,			
	Bounded Sets,			
	Unbounded sets.			
	Suprema and Infima.			
	Completeness			
	Property of R and its			
	equivalent properties.			
	The Archimedean			
	Property, Density of			
	Rational (and			
	Irrational) numbers in			
	R, Intervals. Limit			
	points of a set,			
	Isolated points, Open			
	set, closed set,			
	derived set,			
	Illustrations of			
	Bolzano-Weierstrass			
	theorem for sets,			
	compact sets in R,			
	Heine-Borel			
	Theorem.			
	Unit 2	RB	15	
	Sequences, Bounded			
	sequence,			
	Convergent			
	sequence, Limit of a			
	sequence, lim inf, lim			
	sup. Limit Theorems.			
	Monotone			
	Sequences,			
	Monotone			
	Convergence			
	Theorem.			
	Subsequences,			1

Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy's Convergence Criterion.MB2050Unit 3 Infinite series, convorgence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Vector CalculusRB2050SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous and non-homogeneous15			Divergence Oriterie			
Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.RB2050Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test. Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.RB2050SH/MTH/Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only, General solution of homogeneous equation of second order, principle of superior solution of homogeneous equation. Wronskian: its properties and applications, Linear homogeneous15			Divergence Criteria.			
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Pication of homogeneous equation, Womenal solution of homogeneous equation, Womenal equation, Womenal expression test, Hater and Conditional convergenceRB 2050SH/MTH/ 202/C-4Differential Equations and vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only, Bolzano convergence)CDG a15						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picarls solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneous and non-homogeneousCDG15						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Infinite series, Cauchy's Convergence and divergence of infinite series, Cauchy Criterion. Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG 15						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test, Alternating series, Leibniz test, Absolute and Conditional convergence.CDG test, and infiniteseries, Leibniz test, Absolute and Conditional convergenceCDG test, Itest, Itest, Itest, Itest, Itest, Itest, Cauchy's nth root test, Integral test, Alternating series, Leibniz test, Absolute and Conditional convergence.CDG test, Itest,						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Cauchy's Convergence Criterion.RB RB 202050SH/MTH/ 202/C-4Differential Equations and vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG and position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG and position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG and position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous15						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Pischitz condition and Pischitz condition and Pischitz conditional convergencesCDG solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and and provide and provide and provide and provide and provide an						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Pications, Linear homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneousCDG15						
Criterion.Criterion.RB2050Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.2050SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Unear homogeneousCDG15						
Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.RB2050SH/MTH/Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG15						
Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Limit Comparison test, Limit Comparison test, Limit Comparison test, Atternating series, Leibniz test. Absolute and Conditional convergence.CDG15SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous15						
SH/MTH/Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG ts, lipschitz lipschitz lipschitz lipschitz lipschitz lipschitz solution of homogeneous equation, Vienskian: its properties and applications, Linear homogeneous equation, Vienskian: its properties and applications, Linear homogeneousLipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneous equation, Nronskian: its properties and applications, Linear homogeneous equation, Nronskian: its properties and applications, Linear homogeneous and non-homogeneous15				RB	20	50
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneous equation, Wronskian: its properties and applications, Linear homogeneous equation, Uronskian: its properties and applications, Linear homogeneous and result of the provided and provided and convergence.CDG total total test, and the provided and provided a			Infinite series,			
SH/MTH/DifferentialUnit 1 Lipschitz conditional convergence.CDG15202/C-4Equations and Vector CalculusLipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG15						
SH/MTH/ Differential Unit 1 CDG 15 202/C-4 Equations and Vector Calculus Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneous CDG 15			divergence of infinite			
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneousCDG15						
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneousCDG to15			Criterion, Tests for			
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneousCDG total total total total15			convergence:			
test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.liseSH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous equation, Linear homogeneous and applications, Linear homogeneous and applications, Linear homogeneous and applications, Linear homogeneousCDG15			Comparison test,			
SH/MTH/ 202/C-4Differential Equations and CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneousCDG15			Limit Comparison			
test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.Leibniz test. Absolute and Conditional convergence.SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneousCDG total15			test, Ratio Test,			
Alternating series, Leibniz test. Absolute and Conditional convergence.Image: CDG convergence.Image: CDG seriesImage: CDG seriesSH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous end applications, Linear homogeneous end and applications, Linear homogeneous and non-homogeneous15			Cauchy's nth root			
Leibniz test. Absolute and Conditional convergence.Leibniz test. Absolute and Conditional convergence.Image: ConvergenceSH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and applications, Linear homogeneous and applications, Linear homogeneous and applications, Linear homogeneous and applications, Linear homogeneousImage: Convergence addition and Picard's and and Picard's and Picard's <br< th=""><th></th><th></th><th>test, Integral test.</th><th></th><th></th><th></th></br<>			test, Integral test.			
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneousCDG15			Alternating series,			
SH/MTH/ 202/C-4Differential Equations and Vector CalculusUnit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous equation of homogeneousCDG151000000000000000000000000000000000000			Leibniz test. Absolute			
SH/MTH/ Differential Unit 1 CDG 15 202/C-4 Equations and Vector Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous 15			and Conditional			
202/C-4 Equations and And Feorem (Statement Only). General Calculus Solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous applications, Linear homogeneous applications, Linear homogeneous applications, Linear bomogeneous box			convergence.			
and and Picard's Theorem (Statement Vector only). General Calculus solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and Picard's	SH/MTH/	Differential	Unit 1	CDG	15	
andand Picard'sVectorTheorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and inon-homogeneous	202/C-4	Equations	Lipschitz condition			
VectorTheorem (Statement only). General solution of homogeneous equation of second order, principle of super position for 			and Picard's			
Calculus solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous			Theorem (Statement			
homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous			only). General			
equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous		Calculus	solution of			
order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous			homogeneous			
super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous			equation of second			
homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous			order, principle of			
equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous			super position for			
its properties and applications, Linear homogeneous and non-homogeneous			homogeneous			
applications, Linear homogeneous and non-homogeneous			equation, Wronskian:			
homogeneous and non-homogeneous			its properties and			
non-homogeneous			applications, Linear			
			homogeneous and			
aquations of higher			non-homogeneous			
			equations of higher			

	1	1	1
order with constant			
coefficients, Euler's			
equation, method of			
undetermined			
coefficients, method			
of variation of			
parameters.			
Unit 2	CDG	15	
Systems of linear			
differential			
equations, types of			
linear systems,			
differential operators,			
an operator method			
for linear systems			
with constant			
coefficients,			
Basic Theory of linear			
systems in normal			
form, homogeneous			
linear systems with			
constant coefficients:			
Two Equations in two			
unknown functions.			
Unit 3	CDG	15	
Equilibrium points,			
Interpretation of the			
phase plane			
Power series solution			
of a differential			
equation about an			
ordinary point,			
solution about a			
regular singular point.			
Unit 4	AI	15	60
Triple product,	/ \1	15	00
introduction to vector			
functions, operations			
with vector-valued			
		1	
functions. limits and			
functions, limits and continuity of vector			
continuity of vector			
continuity of vector functions,			
continuity of vector			

		functions.		
SH/MTH/	Real Analysis	Unit 1	CDG	15
203/GE-2	(GE T3)	Review of Algebraic		
		and Order Properties		
		of R, ε -		
		neighbourhood of a		
		point in R. Idea of		
		countable sets,		
		uncountable sets and		
		uncountability of R.		
		Bounded above sets,		
		Bounded below sets,		
		Bounded Sets,		
		Unbounded sets.		
		Suprema and Infima.		
		Completeness		
		Property of R and its		
		equivalent properties.		
		The Archimedean		
		Property, Density of		
		Rational (and		
		Irrational) numbers in		
		R, Intervals. Limit		
		points of a set,		
		Isolated points, Open		
		set, closed set,		
		derived set,		
		Illustrations of		
		Bolzano-Weierstrass		
		theorem for sets,		
		compact sets in R,		
		Heine-Borel		
		Theorem.		
		Unit 2	CDC	15
		Sequences, Bounded	CDG	15
		sequence,		
		Convergent		
		sequence, Limit of a		
		sequence, lim inf, lim		
		sequence, min mi, min sup. Limit Theorems.		
		Monotone		
		Sequences,		
		Monotone		
		Convergence		

SH/MTH/ 301/C-5	Theory of Real	Unit 1 Limits of functions	CDG	15	
				s per topic	lecture s
			S	lecture	no. of
Course Code	Course Title	Course Topics	Teacher	No. of	Total
	S	EMESTER - III			
The tentativ	e dates of Inte	rnal Assessment a	re in Ma	y 2022.	1
		convergence.			
		and Conditional			
		Leibniz test. Absolute			
		Alternating series,			
		test, Integral test.			
		Cauchy's nth root			
		test, Ratio Test,			
		Limit Comparison			
		Comparison test,			
		convergence:			
		Criterion, Tests for			
		series, Cauchy			
		divergence of infinite			
		convergence and			
		Infinite series,		20	
		Unit 3	CDG	20	50
		Criterion.			
		Convergence			
		Cauchy's			
		for Sequences. Cauchy sequence,			
		Weierstrass Theorem			
		only), Bolzano			
		Theorem (statement			
		Subsequence			
		Monotone			
		Divergence Criteria.			
		Subsequences,			

				s per	lecture
				topic	S
SH/MTH/	Theory of	Unit 1	CDG	15	
301/C-5	Real	Limits of functions			
	Functions &	($arepsilon$ - δ approach),			
		sequential criterion			
	Introduction	for limits, divergence			
	to Metric	criteria. Limit			
	Space	theorems, one sided			
		limits. Infinite limits			

		Cauchy's mean value			
		theorem. Taylor's			
		theorem with			
		Lagrange's form of			
		remainder, Taylor's			
		theorem with			
		Cauchy's form of			
		remainder,			
		application of			
		Taylor's theorem to			
		convex functions,			
		relative extrema.			
		Taylor's series and			
		Maclaurin's series			
		expansions of			
		exponential and			
		trigonometric			
		functions, <i>ln</i> (1 +			
		x), 1/ax + b .			
		Application of			
		Taylor's theorem to			
		inequalities.			
		11 1. 4			
		Unit 4	RB	15	60
1				13	00
		Metric spaces:		15	00
		Definition and		10	00
		Definition and examples. Open and		15	00
		Definition and examples. Open and closed balls,		10	
		Definition and examples. Open and closed balls, neighbourhood, open		10	
		Definition and examples. Open and closed balls,		10	
		Definition and examples. Open and closed balls, neighbourhood, open		10	
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set.		10	
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set,		10	
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter		10	
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces,		10	
SH/MTH/	Group	Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable	MN	15	
SH/MTH/ 302/ C-6		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.			
	Group Theory-I	Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1			
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1 Symmetries of a			
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1 Symmetries of a square, Dihedral			
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1 Symmetries of a square, Dihedral groups, definition and			
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1 Symmetries of a square, Dihedral groups, definition and examples of groups			
		Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1 Symmetries of a square, Dihedral groups, definition and examples of groups including permutation			

elementary			
properties of groups.			
Unit 2	MN	15	
Subgroups and		15	
examples of			
subgroups,			
centralizer,			
normalizer, center of			
a group, product of			
two subgroups.			
Unit 3	MN	15	
Properties of cyclic		15	
groups, classification			
of subgroups of cyclic			
groups. Cycle			
notation for			
permutations,			
properties of			
permutations, even			
and odd			
permutations,			
alternating group,			
properties of cosets,			
Lagrange's theorem			
and consequences			
including Fermat's			
Little theorem.			
Unit 4	MN	15	
External direct		15	
product of a finite			
number of groups,			
normal subgroups,			
factor groups,			
Cauchy's theorem for			
finite abelian groups.			
Unit 5	MN	15	75
Group		15	15
homomorphisms,			
properties of			
homomorphisms,			
Cayley's theorem,			
properties of			
isomorphisms. First,			
Second and Third			

		isomorphism			
		theorems.			
SH/MTH	Numerical	Unit 1	AI	15	
/303/C-7	Methods	Algorithms.			
	Numerical	Convergence. Errors:			
	Methods Lab	Relative, Absolute.			
		Round off.			
		Truncation.			
		Unit 2	AI	15	
		Transcendental and			
		Polynomial			
		equations: Bisection			
		method, Newton's			
		method, Secant			
		method, Regula-falsi			
		method, fixed point			
		iteration, Newton-			
		Raphson method.			
		Rate of convergence			
		of these methods.			
		Unit 3	AI	15	
		System of linear			
		algebraic equations:			
		Gaussian Elimination			
		and Gauss Jordan			
		methods. Gauss			
		Jacobi method, Gauss Seidel method			
		and their			
		convergence analysis. LU			
		Decomposition			
		Unit 4	A 1	15	
		Interpolation:	AI	15	
		Lagrange and			
		Newton's methods.			
		Error bounds. Finite			
		difference operators.			
		Gregory forward and			
		backward difference			
		interpolation.			
		Numerical			
		differentiation:			
			1		

		interpolations,			
		methods based on			
		finite differences.			
		Unit 5	AI	15	75
		Numerical	AI	15	15
		Integration: Newton			
		Cotes formula,			
		Trapezoidal rule,			
		Simpson's 1/3rd rule,			
		Simpsons 3/8th rule,			
		Weddle's rule,			
		Boole's Rule.			
		Midpoint rule,			
		Composite			
		Trapezoidal rule,			
		Composite Simpson's			
		1/3rd rule, Gauss			
		quadrature formula.			
		The algebraic			
		eigenvalue problem:			
		Power method.			
		Approximation: Least			
		square polynomial			
		approximation.			
SH/MTH /	Algebra	Unit 1	CDG	15	
304/GE-3	(GET2)	Polar representation			
	(0	of complex numbers,			
		nth roots of unity, De			
		Moivre's theorem for			
		rational indices and			
		its applications.			
		Theory of equations:			
		Relation between			
		roots and			
		coefficients,			
		Transformation of			
		equation, Descartes			
		rule of signs, Cubic			
		and biquadratic			
		equation.			
		Inequality: The			
		inequality involving			
		$AM \ge GM \ge HM$,			
1		Cauchy-Schwartz	1	1	1

inequality.			
Unit 2	CDG	15	
Equivalence			
relations. Functions,			
Composition of			
functions, Invertible			
functions, One to one			
correspondence and			
cardinality of a set.			
Well-ordering			
property of positive			
integers, Division			
algorithm, Divisibility			
and Euclidean			
algorithm.			
Congruence relation			
between integers.			
Principles of			
Mathematical			
Induction, statement			
of Fundamental			
Theorem of			
Arithmetic.			
Unit 3	RB	15	
Systems of linear			
equations, row			
reduction and			
echelon forms, vector			
equations, the matrix			
equation Ax=b,			
solution sets of linear			
systems, applications			
of linear systems,			
linear independence.			
Unit 4	RB	15	60
Introduction to linear			
transformations,			
matrix of a linear			
transformation,			
inverse of a matrix,			
characterizations of			
invertible matrices.			

SH/MTH / 305/SEC-1	Programming using C	Subspaces of R ⁿ , dimension of subspaces of R ⁿ , rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	AI	50	50
	(New)				
The tentative of	lates of Interr	nal Assessment ar	e in De	cembei	r 2021.
	SEMESTE	ER - IV			
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH /401/ C-8	Riemann Integration and Series of Functions	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums,	MN	15	

piecewise continuous and monotone functions. Intermediate Value theorem for Integrals. Fundamental theorem of Integral Calculus. Unit 2 Improper integrals. Convergence of Beta	MN	15
and Gamma		
functions.		
Unit 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M- Test.	MN	15
Unit 4 Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition.	MN	15

SH/MTH/402/C	Multivariate	Examples of Fourier expansions and summation results for series. Unit 5 Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem. Unit 1	MN	15	75
-9	Calculus	Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems			

Unit 2	ΔΙ	15	
Double integration	AI	15	
over rectangular			
region, double			
integration over non-			
rectangular region,			
Double integrals in			
polar co-ordinates,			
Triple integrals,			
Triple integral over a			
parallelepiped and			
solid regions. Volume			
by triple integrals,			
cylindrical and			
spherical co-			
ordinates. Change of			
variables in double			
integrals and triple			
integrals			
Unit 3	AI	15	
	/ \1	тJ	
Definition of vector		15	
		15	
Definition of vector		15	
Definition of vector field, divergence and		13	
Definition of vector field, divergence and curl.		13	
Definition of vector field, divergence and curl. Line integrals,		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals,		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector		13	
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence			60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path.	AI	15	60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4			60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals,			60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over			60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically			60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces.			60
Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically			60

SH/MTH /403/ C-10	Ring Theory and Linear Algebra-I	Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	RB	15	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients. Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span,	RB	15	
		linear independence, basis and dimension, dimension of subspaces. Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations.	RB	15	60

SH/MTH /404/GE-4	Differential Equations and Vector Calculus (GET4)	Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix. Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.	CDG	15
		Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with	CDG	15

		constant coefficients: Two Equations in two unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	CDG	15	
		Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG	15	60
SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of graphs.	RB	15	
		Unit 2 Eulerian circuits, Eulerian graph, semi- Eulerian graph, theorems, Hamiltonian cycles,theorems	RB	15	

Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,			
Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	RB	20	50

The tentative dates of Internal Assessment are in May 2022.

	SEMEST	ER - V			
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH / 501/C-11	Partial Differential Equations and Applications	Unit 1 Partial Differential Equations – Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving	RB	15	

Constrained motion, varying mass,			
Central force.	/ \1	10	
Unit 4	AI	15	60
problem			
Heat Conduction			
Problem. Solving the			
the Vibrating String			
Method of separation of variables, Solving			
Wave Equation.			
Non- Homogeneous			
boundary conditions.			
homogeneous			
with non-			
Free end. Equations			
Infinite String with a			
fixed end, Semi-			
Infinite String with a			
Problems. Semi-			
string. Initial Boundary Value			
problem of an infinite			
theorem, Cauchy			
Kowalewskaya			
Cauchy-			
The Cauchy problem,			
Unit 3	RB	15	
canonical forms.			
Linear Equations to			
of second order			
or elliptic. Reduction			
hyperbolic, parabolic			
equations as			
second order linear			
Classification of			
equation and Laplace equation.			
equation, Wave			
Derivation of Heat			
Unit 2	RB	15	
equations.			
differential			
first order partial	1	1	

		tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.			
SH/MTH / 502/C-12	Group Theory - II	Unit 1Automorphism, innerautomorphism,automorphismgroups,automorphism groupsof finite and infinitecyclic groups,applications of factorgroups toautomorphismgroups,Characteristicsubgroups,Commutatorsubgroup and itsproperties.	MN	15	
		Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.	MN	15	
		Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem.	MN	15	

		Index theorem.			
		Unit 4	MN	15	60
		Groups acting on			
		themselves by			
		conjugation, class			
		equation and			
		consequences,			
		conjugacy in Sn, p-			
		groups, Sylow's			
		theorems and			
		consequences,			
		Cauchy's theorem,			
		Simplicity of An for n			
		\geq 5, non-simplicity			
		tests.			
SH/MTH /	Linear	Unit 1	CDG	15	
503/DSE-1	Programming	Introduction to linear			
	(DSE T1)	programming			
		problem. Theory of			
		simplex method,			
		graphical solution,			
		convex sets,			
		optimality and			
		unboundedness, the			
		simplex algorithm,			
		simplex method in			
		tableau format,			
		introduction to			
		artificial variables,			
		two - phase method.			
		Big - M method and			
		their comparison.			
		Unit 2	CDG	15	
		Duality, formulation			
		of the dual problem,			
		primal - dual			
		relationships,			
		economic			
		interpretation of the			
		dual.			
		Transportation			
		problem and its			
		mathematical			
		formulation,			

		northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.	CDG	20	50
		Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.			
SH/MTH / 504/DSE-2	Probability and Statistics (DSE T4)	Unit 1 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function,	AI	15	

I		1	
	characteristic		
	function, discrete		
	distributions:		
	uniform, binomial,		
	Poisson, geometric,		
	negative binomial,		
	continuous		
	distributions:		
	uniform, normal,		
	exponential.		
	Unit 2	AI	15
	Joint cumulative		
	distribution function		
	and its properties,		
	joint probability		
	density functions,		
	marginal and		
	conditional		
	distributions,		
	expectation of		
	function of two		
	random variables,		
	conditional		
	expectations,		
	independent random		
	variables, bivariate		
	normal distribution,		
	correlation		
	coefficient, joint		
	moment generating		
	function (jmgf) and		
	calculation of		
	covariance (from		
	jmgf), linear		
	regression for two		
	variables.		
	Unit 3	AI	15
	Chebyshev's		10
	inequality, statement		
	and interpretation of		
	(weak) law of large		
	numbers and strong		
	law of large numbers.		
	Central Limit		

	theorem for			
	independent and			
	identically distributed			
	random variables			
	with finite variance,			
	Markov Chains,			
	Chapman-			
	Kolmogorov			
	equations,			
	classification of			
	states.			
	Unit 4	AI	15	
	Random Samples,			
	Sampling			
	Distributions,			
	Estimation of			
	parameters, Testing			
	of hypothesis.			
The tentative dates for Internal Examination are in December				

2021.

SEMESTER-VI

Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH / 601/C-13	Metric Spaces and Complex Analysis	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem.	RB	15	
		Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Connectedness,	RB	15	

	· · · · · · · · · · · · · · · · · · ·
connected subsets of	
R.	
Compactness:	
Sequential	
compactness, Heine-	
Borel property,	
Totally bounded	
spaces, finite	
intersection property,	
and continuous	
functions on compact	
sets.	
Homeomorphism.	
Contraction	
mappings. Banach	
Fixed point Theorem	
and its application to	
ordinary differential	
equation.	
Unit 3	חח
Limits, Limits	RB
involving the point at	
infinity, continuity.	
Properties of	
complex numbers,	
regions in the complex plane,	
functions of complex	
variable, mappings.	
Derivatives,	
differentiation	
formulas, Cauchy-	
Riemann equations,	
sufficient conditions	
for differentiability.	
Unit 4	RB
Analytic functions,	RB
Analytic functions, examples of analytic	RB
Analytic functions, examples of analytic functions,	RB
Analytic functions, examples of analytic functions, exponential function,	RB
Analytic functions, examples of analytic functions,	RB
Analytic functions, examples of analytic functions, exponential function,	RB
Analytic functions, examples of analytic functions, exponential function, Logarithmic function,	RB

		Unit 2	CDG	15	
		domains.			
		domains, Euclidean			
		factorization			
		primes, unique			
		domains, irreducible,			
		Divisibility in integral			
		factorization in Z [x].			
		and unique			
		Eisenstein criterion,			
		irreducibility tests,			
		reducibility tests,			
		polynomials,			
		factorization of			
		domains,			
		principal ideal			
		and consequences,			
	Algebra II	division algorithm			
002/0-14		commutative rings,			
602/C-14	and Linear	Polynomial rings over	CDG	10	
SH/MTH /	Ring Theory	Unit 1	CDG	15	-
		power series.			
		convergence of			
		and uniform			
		examples, absolute			
		Unit 6 Laurent series and its	RB	15	90
		and its examples.			
		series, Taylor series			
		sequences and			
		Convergence of			
		theorem of algebra.			
		and the fundamental			
		Liouville's theorem			
		Unit 5	RB	15	
		integral formula.			
		theorem, Cauchy			
		Cauchy- Goursat			
		contour integrals.			
		bounds for moduli of			
		its examples, upper			
		Contour integrals and			
		functions. Contours,			
		definite integrals of			

		Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms.			
		Unit 3 Inner product spaces and norms, Gram- Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem.	CDG		50
SH/MTH / 603/DSE-3	Number Theory (DSE T7)	Unit 1 Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese	MN	15	

		Domoindor the survey			
		Remainder theorem,			
		Fermat's Little			
		theorem, Wilson's			
		theorem.			
		Unit 2	MN	15	
		Number theoretic			
		functions, sum and			
		number of divisors,			
		totally multiplicative			
		functions, definition			
		and properties of the			
		Dirichlet product, the			
		Mobius Inversion			
		formula, the greatest			
		integer function,			
		Euler's phi - function,			
		Euler's theorem,			
		reduced set of			
		residues. some			
		properties of Euler's			
		phi-function.			
		Unit 3	MN	20	50
		Order of an integer			
		modulo n, primitive			
		roots for primes,			
		composite numbers			
		having primitive			
		roots, Euler's			
		criterion, the			
		Legendre symbol and			
		its properties,			
		quadratic reciprocity,			
		quadratic			
		congruences with			
		composite moduli.			
		Public key			
		encryption, RSA			
		encryption and			
		decryption, the			
		equation $x^2 + y^2 = z^2$,			
		Fermat's Last			
		•		1	
		theorem.			
		theorem.			
SH/MTH/	Project Work	theorem.	AI		

604/DSE-4								
The tentative dates for Internal Assessment are in May 2022.								